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ABSTRACT OF THESIS

Biomedical Word Sense Disambiguation with
Neural Word and Concept Embeddings

Addressing ambiguity issues is an important step in natural language processing
(NLP) pipelines designed for information extraction and knowledge discovery. This
problem is also common in biomedicine where NLP applications have become indis-
pensable to exploit latent information from biomedical literature and clinical narra-
tives from electronic medical records. In this thesis, we propose an ensemble model
that employs recent advances in neural word embeddings along with knowledge based
approaches to build a biomedical word sense disambiguation (WSD) system. Specif-
ically, our system identifies the correct sense from a given set of candidates for each
ambiguous word when presented in its context (surrounding words). We use the
MSH WSD dataset, a well known public dataset consisting of 203 ambiguous terms
each with nearly 200 different instances and an average of two candidate senses rep-
resented by concepts in the unified medical language system (UMLS). We employ
a popular biomedical concept, Our linear time (in terms of number of senses and
context length) unsupervised and knowledge based approach improves over the state-
of-the-art methods by over 3% in accuracy. A more expensive approach based on the
k-nearest neighbor framework improves over prior best results by 5% in accuracy. Our
results demonstrate that recent advances in neural dense word vector representations
offer excellent potential for solving biomedical WSD.

KEYWORDS: word sense disambiguation, neural word embeddings, knowledge based
systems, UMLS, MetaMap
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Chapter 1 Introduction

Word Sense Disambiguation (WSD) [25] is the task of detecting the correct sense
of a word based on the context among multiple senses it might assume. Thus sense
represents one of the many meanings of an ambiguous word. For instance, the word
‘cold’ can mean different concepts based on the context. In “the air in the center of
the vortex of a cyclone is generally very cold”, cold refers to temperature. Let us
consider the example, “I could not come to office last week because I had a cold”.
Here cold means fever or respiratory infection. Two completely different senses of the
same word occur because the contexts are different. WSD is an important problem
as it applies to a number of natural language processing (NLP) tasks such as text
to speech conversion [1], machine translation [2,3], summary generation, information
extraction, information retrieval, concept mapping and it also has impact on accuracy
of biomedical applications such as biomedical coding and indexing [18, 34], relation
extraction [5, 24], and knowledge discovery [8, 20]. One of the initial steps of any
of the previously mentioned NLP tasks is to retrieve the correct sense of any am-
biguous word present in input texts. Disambiguation is not as intuitive as in human
communication because any ambiguity that arose while having human conversations
is typically resolved as the conversation continues due to years of experience in the
complexities of dealing with linguistic phenomena. However, with the development
of modern technology, we now store information in computer systems so that we can
retrieve the same information and use it later quickly. In order to retrieve the in-
formation correctly the computer system must be able to resolve any ambiguity that
arises without any external help from the document creator. In order to assist com-
puters to deal with this problem, NLP researchers have been working on WSD. This
thesis focuses on developing new methods for biomedical WSD using a well known
larger public dataset.

The methods we present in this thesis ensemble predictive information from two
different approaches. These two approaches complement each other to form our final
model. One of them is the Markov chain based conditional probability distribution
approach that measures how much a document is associated with a given biomedical
sense using Bayes rule. The second uses neural word and concept embeddings to
measure the angular similarity between context and concept vectors; it also measures
the magnitude of projection of document vectors along the concept vectors. We
demonstrate that combinations of these three measurements lead to improvements
over prior state-of-the-art in biomedical WSD on a particular public dataset called
the MSH WSD dataset [16]. Details of our methods are in the final chapter. The
fundamental contribution of this thesis can be outlined as follows.

• We develop weakly supervised methods that apply recent developments in deep
neural networks for NLP tasks for biomedical WSD. Specifically, we learn word
and concept (sense) vectors based on a large corpus of biomedical abstracts using
a well known neural word embedding framework called word2vec [27]. We then

1
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compare using different similarity metrics the concepts associated with each
ambiguous term to the word context vector of testing instances and choose the
best concept that maximizes this similarity. We improve our the best results
generated through unsupervised approaches in published literature on a public
dataset by over 3% accuracy using these linear time approaches.

• We propose a more expensive k-nearest neighbors approach that uses our lin-
ear time WSD methods to create a distantly supervised training dataset. By
considering judgements of the top k neighbors that are most similar to a new
test context, we predict its correct sense. Although expensive, this provides an
absolute 2% improvement in accuracy over linear time methods.

The rest of the thesis is organized as follows. Chapter 2 discusses background
information for WSD including different prior approaches to tackle it specifically
machine learning and information extraction methods. Chapter 3 presents our core
methods and results.

2
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Chapter 2 Background and Prior Work

For this thesis, WSD specifically deals with identifying the correct sense of a term,
among a set of given candidate senses for that term, when it is presented in a brief
narrative along with its context (surrounding text). We start this chapter with a
specific biomedical example. Consider the ambiguous word ‘discharge’. It has two
unique senses in biomedicine – (S1). The first is the administrative process of releasing
a patient from a healthcare facility following an in-patient stay for some treatment
or procedure. (S2). The second sense pertains to bodily secretions of certain fluids
from an orifice or wound. In our task the ambiguous word discharge is specified along
with the sense set {S1, S2} and an example context – “Low risk patients identified
using CADILLAC risk score with STEMI treated successfully with primary PCI have
a low adverse event rate on the third day or later of hospitalization suggesting that
an earlier discharge is safe in properly selected patients.” Our goal is to identify the
correct sense S1 for this specific occurrence of ‘discharge’.

For a thorough survey of approaches to WSD, please see the survey by Navigli [30],
which suggests mainly three categories – supervised, knowledge-based, and unsuper-
vised approaches. Supervised approaches for WSD [40,47] use a labeled dataset along
with interesting lexical/syntactic features derived from the context around the term
to build machine learned models that predict the correct sense in unseen test con-
texts. Knowledge based approaches [16, 26] do not use any corpus but solely rely
on thesauri or sense inventories such as WordNet and the Unified Medical Language
System (UMLS) that contain brief definitions of different senses and corresponding
synonyms. Unsupervised approaches may employ topic modeling [21] based meth-
ods to disambiguate when the senses are known ahead of time. Some unsupervised
approaches [42] are often referred to as performing word sense discrimination or in-
duction as opposed to disambiguation because they employ clustering approaches
where different clusters are expected to represent the different senses, which are not
known a priori.

2.1 WSD in Biomedicine

In biomedicine, knowledge-based word sense disambiguation efforts mostly relied on
the UMLS knowledge base [29], which contains over 3.4 million unique concepts
expertly sourced from nearly 200 different terminologies in biomedicine and allied
fields. The UMLS is maintained by the US National Library of Medicine (NLM)
and is updated every year to reflect new concepts and other changes. For each
concept in the UMLS, there is usually a brief definition and sometimes additional
relations (both hierarchical and associative) connecting it with other concepts. Each
concept has a unique ID called the concept unique identifier (CUI), an alphanumeric
string that starts with a ‘C’. For example, the sense S1 (administrative process) for
‘discharge’ discussed earlier is represented by CUI C0030685 and sense S2 (body
substance) is represented by the CUI C0012621. S1 has a short definition “The

3
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administrative process of discharging the patient, alive or dead, from hospitals or
other health facilities”. For S2 we notice the definition – “In medicine, a fluid that
comes out of the body. Discharge can be normal or a sign of disease.” In the MSH
WSD dataset that we use in this thesis, the candidate senses for each ambitious word
are represented in the form of these unique CUIs. The task is to identify the correct
CUI given a particular context (few sentences) containing an ambiguous word. For the
rest of the manuscript, we use the three terms CUI, concept, and sense synonymously
as they refer to the same notion.

Schuemie et al. [38] present a nice survey of approaches and efforts in biomedical
WSD until 2005 including the well known NLM WSD dataset [43], which has 50
ambiguous terms with 5000 test instances. Disambiguation efforts were also focused
on a small set of 10–15 ambiguous abbreviations [32,44] using combinations of super-
vised and unsupervised approaches. More recent approaches [23,37] used supervised
models including Naive Bayes, SVMs, logistic regressors, decision lists with a variety
of features using both subsets of the NLM WSD dataset and other smaller datasets.
McInnes and Pedersen [26] use the network structure of the UMLS (specifically the
hyperemic trees) and concept definitions to devise concept relatedness measures which
are in turn used for WSD for the MSH WSD dataset. Among all the datasets avail-
able, the MSH WSD that we use in our current effort is the largest publicly available
dataset [16] for biomedical WSD.

In a recent approach [46], Jimeno-Yepes and Berlanga used a hybrid approach
that combined a knowledge-based component that exploits the UMLS definitions
and synonyms for different concepts with unlabeled biomedical narratives (from the
biomedical abstract database Medline/PubMed) to derive word-concept probabil-
ity estimates P (w|c) for any word w and UMLS concept c. They exploited the
Naive Bayes formulation and selected the correct sense as the CUI c that maximizes
P (T |c) =

∏
i P (wi|c), where wi is the i-th word in the test context T that contains

the ambiguous word. With this approach they achieved an accuracy of 89.1% on the
MSH WSD dataset [16]. This result corresponds to the best performance thus far on
the MSH WSD dataset without using supervised models. In this thesis, we use recent
approaches based on neural word embeddings to generate new state-of-the-art results
on MSH WSD dataset achieved without supervised cross validation experiments on
it. Our methods can be classified as weakly supervised given we employ a well known
biomedical concept mapping tool MetaMap [4] to generate concept vectors and em-
ploy them in combination with our knowledge-based unsupervised methods [46].

2.2 Neural Embeddings for WSD

Neural word representations have been shown to capture both semantic and syntactic
information and a few recent approaches learn word vectors [6,12,28] (as elements of
Rd, where d is the dimension) in an unsupervised fashion from textual corpora. These
dense word vectors obviate the sparsity issues inherent to the so called one-hot rep-
resentations of words that lead to very large dimensionality (typically the size of the
vocabulary) resulting in further issues in similarity computations, a phenomenon of-
ten termed as the curse of dimensionality [7, Chapter 1.4]. Chen et al. [9] adapted the

4
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neural word embedding approach to compute different sense embeddings (of the same
word) and showed competitive performance on the SemEval 2007 WSD dataset [31].
Disambiguation is achieved by picking the sense that maximizes the cosine similarity
of the corresponding sense vector with the context vector for an ambiguous word. Re-
cently, Iacobacci et al. [15] evaluated and demonstrated the superiority of neural word
embeddings as features in supervised WSD models on the same SemEval dataset.

In a very recent effort Pakhomov et al. [33] use word embeddings (without cor-
pus enhanced concept embeddings) for the MSH WSD dataset but only report 77%
accuracy. Their approach relies on vectors of words that co-occur with words in the
definitions of different senses in the UMLS. In our current effort, we used a similar
framework as Chen et al. [9] to directly learn biomedical sense vectors using a pure
distributional semantics framework that doesn’t rely on word vectors. Additionally,
we employed complementary evidences beyond cosine similarity to achieve further
improvements that rival performances typically reported using fully supervised ap-
proaches.

5
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Chapter 3 NLP and Knowledge-Based Building Blocks

We alluded to most of the basic NLP components used in our methods in Chapter 2.
In this chapter, we provide additional background about specific building blocks that
are central to our main methods.

3.1 Unified Medical Language System

The UMLS is a large domain expert driven aggregation of nearly 200 biomedical
terminologies and standards. It functions as a comprehensive knowledge base and
facilitates interoperability between information systems that deal with biomedical
terms. It has has three main components: Metathesaurus, Semantic Network, and
SPECIALIST lexicon. The Metathesaurus has terms and codes, henceforth called
concepts, from different terminologies. Biomedical terms from different vocabularies
that are deemed synonymous by domain experts are mapped to the same Concept
Unique Identifier (CUI) in the Metathesaurus. The semantic network acts as a typing
system that is organized as a hierarchy with 133 semantic types such as disease
or syndrome, pharmacologic substance, or diagnostic procedure. It also captures 54
important relationships (or relation types) between biomedical entities in the form of
a relationship hierarchy with relationships such as treats, causes, and indicates.

The Metathesaurus currently has about 3.4 million concepts with more than 26
million relations connecting these concepts. Although relations in the Metathe-
saurus have relation types that are beyond the 54 available through the semantic
network, the ones relevant to WSD are high level relation types such as parent,
child, rel narrow, and rel broad. The high level relations can be represented as
C1 → < rel − type > → C2 where C1 and C2 are concepts in the UMLS and
< rel− type > ∈ {parent, child, rel narrow, rel broad}. The semantic interpretation
of these relations (or triples) is that the C1 is related to C2 via the relation type
< rel − type >. The child (resp. parent) relationship means that concept C1 has
C2 as a child (resp. parent). The rel broad (resp. rel narrow) type means that C1
represents a broader (resp. narrower) concept than C2. For example, the concept
hypertensive disease is a broader concept compared to systolic hypertension. These
broad and narrow relationships are created by experts to capture those relationships
that cannot be captured by the more rigid parent/child relationships in different
source vocabularies. Knowledge based methods also exploit paths and their lengths
in the UMLS relations graph to resolve word ambiguities. The third component, SPE-
CIALIST lexicon, is useful for lexical processing and variant generation of different
biomedical terms.

3.2 NLM’s NER and Concept Mapping Program: MetaMap

Named entity recognition (NER) is a well known application of NLP techniques where
different entities of interest such as people, locations, and institutions are automati-

6



www.manaraa.com

cally recognized from mentions in free text. Named entity recognition in biomedical
text is difficult because linguistic features that are normally useful (e.g., upper case
first letter, prepositions before an entity) in identifying generic named entities are not
useful when identifying biomedical named entities, several of which are not proper
nouns. Hence, NER systems in biomedicine rely on expert curated lexicons and the-
sauri. In this work, we use MetaMap [4], a biomedical NER and concept mapping
system developed by researchers at the NLM. MetaMap uses a dictionary based ap-
proach (using the UMLS concept names as the dictionary) in combination with shal-
low linguistic parsing (chunking) heuristics for partial match mapping (based on lex-
ical information in the SPECIALIST lexicon) to extract UMLS concepts. MetaMap
can process a textual document as a whole but can also generate UMLS concepts
from individual noun phrases that are passed as input to it. The latter option is
more helpful to identify more specific concepts from longer phrases. MetaMap also
identifies negations of concepts and also has a WSD option which is based on concept
profiles generated through words co-occurring with different concepts in biomedical
literature [45]. We use MetaMap’s WSD implementation in our approach to obtain
concept vectors which are subsequently used to build superior WSD methods.

3.3 Neural Word Embeddings: Word2Vec

Representing words and documents as vectors has been a long standing approach in
information retrieval and computational semantics [41]. Specifically, text corpora can
be represented as the so called term-document matrices where each row represents a
term (word) and each column represents a document. Each element in such a matrix
typically contains the number of times the word corresponding to the row occurs in the
document represented by the column. Additional weighting schemes such as the tf-idf
heuristic are used instead of the raw frequencies to account for word frequency and
informativeness. In this approach, the vector representation of a word is simply the
row corresponding to that word. Similarity of two words can be computed by taking
cosine similarity or some other metric that compares the corresponding vectors. This
approach has two main issues: (1). The size of the vectors can be prohibitive given
they are equal to the number of document, which could be very large. (2). The vectors
are relatively sparse and do not accurately capture the lexical semantics as expected.
To counter the second issue, latent semantic indexing [13] has been introduced and
has been an excellent alternative. However, it typically involved expensive singular
value decompositions due to which other approaches that also addressed the first issue
were introduced. In particular, random indexing [10] has emerged as an alternative
offering much less computational burden and is shown to be effective in cases when the
corpora are large. Basically, random indexing projects sparse term vectors into dense
vectors in a low dimensional space while also roughly preserving relative distances
between the vectors. This has been used in many applications such as biomedical
knowledge discovery [11] and multi-label classification [17,19].

In 2013, researchers at Google introduced efficient approaches, release as a soft-
ware program Word2Vec, that use neural networks to automatically learn low dimen-
sional dense vector representations of words in an unsupervised manner from large

7
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text corpora [27, 28]. In these methods, Mikolov et al. introduce the so called skip-
gram model and its improvements to learn word vectors. This model is based on a
neural network with three layers: the input layer, a low dimensional projection layer,
and an output layer as shown in Figure 3.1. The central idea is to learn to predict
neighbor words within a proximity context window of C words based on the current
word being input to the neural network. As a sliding context window moves over a
corpus of documents, at each position, the word at the center of the window becomes
the target word and the words to the left and right of it become the context words
to be predicted. The objective is to maximize the average log-likelihood of the cor-
responding context words given the input target word. Using back propagation, the
gradients are used to modify the weight matrices of the neural network including the
target word vector elements. Before training begins, the word vectors are typically
initialized randomly with uniform selection from a small range [− 1

2d
, 1
2d

] where d is
the dimensionality of the word vectors [14]. As training proceeds, the word vectors
are updated and the resultant vectors at the end are expected to have nice seman-
tic properties. Mikolov et al. give several examples of such properties – they find
the vector computed by vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closest to
vec(“Paris”) than any other word where proximity is measured using cosine distance.
Although the idea of distributional semantics has been popular for quite some time,
the advent of recent deep neural network based unsupervised pre-training as outlined
here seems to have revitalized the field of dense vector representations. Full details
of the derivations leading to parameter updates and other efficiency considerations
are presented by Rong [36].

Figure 3.1: Skip-gram word embedding model architecture figure from Rong [36]

8
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3.4 A Knowledge-Based Bayesian WSD Approach

As a component of our methods, we use the knowledge-based approach developed by
Jimeno-Yepes and Berlanga [46] which we briefly discussed in Section 2.1. Here we
give some additional details. The main idea is to model P (c|T ), probability of CUI
c given a context T . If this is estimated accurately, our WSD solution is to simply
pick the candidate sense c that maximizes P (c|T ). Using Bayes theorem, we have

P (c|T ) =
P (T |c)P (c)

P (T )
∝ P (T |c) =

∏
wj∈T

P (wj|c),

with the naive assumption of independence of tokens wj that constitute the context
T given the sense c. So our solution now depends on estimating the word-concept
probabilities P (w|c) for any word w and CUI c. The rest of this section outlines how
Jimeno-Yepes and Berlanga accomplish that.

A straightforward first cut to obtain P (w|c) is to simply model it as the MLE
estimate

P (w|c) =
count(w, c)∑

w′∈ lex(c) count(w
′, c)

,

where lex(c) is the synonymous name set of c in the UMLS. Instead of limiting the
search of w to the lexical space of c, they propose to extend it to lexical spaces of
concepts that are related to c based on the UMLS relations discussed in Section 3.1.
That is, we now have Pj(w|c0), which denotes the probability of w being selected for
the set of concepts Rk(c0) that are k hops away from the original concept c0 = c.
Specifically, they estimate

Pk(w|c0) =
∑

ck∈Rk(c0)

Pk(w, ck, ck−1, . . . |c0)

=

∑
ck∈Rk(c0)

Pk(w, ck, ck−1, . . . , c0)

P (c0)

=

∑
ck∈Rk(c0)

P0(w|ck)
∏

l=0,...,k−1 P (cl+1|cl)P (c0)

P (c0)

=
∑

ck∈Rk(c0)

P0(w|ck)
∏

l=0,...,k−1

P (cl+1|cl),

where Markov assumption is used for estimating Pk(w, ck, . . . , c0) in terms of traversal
probabilities, P (cl+1|cl), of hopping from concept cl to cl+1 in the UMLS relation
graph. This is mathematically estimated as

P (cl+1|cl) =
|r(cl+1, cl)|
|r(∗, cl)|

,

with r(c1, c2) denoting the number of UMLS relations connecting c1 and c2 and the
denominator indicating the number of relations where cl participates.

9
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The word concept probabilities Pj(w|c0) obtained at different values of j = 0, . . . , l
are finally combined using coefficients are determined using

P (w|c0) =
∑

j=0,...,l

αjPj(w|c) where α0, . . . , αl > 0 and
∑

j=0,...,l

αj = 1.

They start with each αj = 1/l with l being the number of hops considered and
update them using expectation-maximization, details of which are presented in their
paper [46, Section 3.3].

10
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Chapter 4 Dataset and Methods

There are 203 ambiguous terms in the MSH WSD dataset [16] with a total of 424
unique concept unique identifiers (CUIs) from the unified medical language system
(UMLS [29]), each of which is a unique sense. Thus, on average, the dataset has
424/203 = 2.08 senses. There are a total of 38,495 test instances of contexts (a
few sentences) each with one of the 203 ambiguous terms along with the correct
sense (CUI). Besides being the largest biomedical WSD dataset, this also includes a
richer set of ambiguities including 106 ambiguous abbreviations, 88 ambiguous noun
phrases, and 9 that are combinations of both. Due to these features, the NLM en-
courages researchers to use this latest dataset over their older dataset (please see
https://wsd.nlm.nih.gov). Our goal is to directly test on this dataset by employ-
ing distantly supervised or unsupervised approaches. To this end we learn vector
representations of words and CUIs using well known approaches that apply deep
neural networks to NLP tasks.

4.1 Neural Word and Concept Embeddings

We ran the Word2Vec [28] word embedding program (the skip-gram model) from
Google on over 20 million biomedical citations (titles and abstracts) from PubMed
to obtain word vector representations with a word window size of ten words and
dimensionality d = 300 with all other parameters set to the default settings. To
learn concept or CUI vectors of the same dimensionality, we curated a dataset of five
million randomly chosen subset of nearly five million citations (published between
1998 and 2014). For this subset of PubMed, we ran MetaMap [4], a well known
NER and concept mapping program from the NLM, with its WSD option turned
on so we obtain unique CUIs for potential ambiguous terms. The text was passed
through MetaMap two adjacent non-stop words at a time, to capture as many CUIs
as possible. Next, we treated these sequences of CUIs in each citation thus obtained
through NER as a semantic version of the free text corpus. We ran word2vec on
this corpus of CUI texts, just like how we ran it on free text articles with the same
parameters. As a result we obtained 300 dimensional word vectors for each CUI,
including all 424 CUIs corresponding to the 203 ambiguous terms in our test dataset.

This component of our methodology to derive dense concept vectors involves dis-
tant supervision because although MetaMap with its WSD option is in and of itself not
a powerful solution (see Chapter 5), it nevertheless was useful to learn concept vectors
that in turn helped us achieve state-of-the-art results. This deep neural network based
distributional semantics approach to learning CUI vectors aids in modeling comple-
mentary aspects of similarity given we use, as a component, the CUI definition based
information via our earlier word-probability estimate based approach [46].

11
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4.2 WSD with Concept Embeddings and Knowledge-Based Approaches

Our main idea is that besides comparing pairs of word vectors and concept vectors, we
can also compare a word vector with a concept vector given at a high level there is a
direct connection between words and concepts – words are often lexical manifestations
of high level concepts. The fact that we simply replaced word sequences in free
text with the corresponding concept sequences to generate CUI vectors of the same
dimensionality as the word vectors also makes it feasible to compare word vectors
and their compositions to concept vectors. As we show in Chapter 5, this intuition
appears to work as well as other state-of-the-art approaches [46].

We establish some notation for the rest of the paper. In any WSD problem, a test
instance corresponds to a three tuple (T,w,C(w)) where T is a context, typically a
few sentences, that contains the ambiguous term w and C(w) is the set of different
senses that w can assume depending upon the context T 1. Specifically, C(w) in this
thesis is the set of different CUIs that capture the different senses for w. Our WSD
goal is to construct a function f(T,w,C(w)) that maps T to the CUI c ∈ C(w) that
corresponds to the correct sense in which w was used in T . We have four approaches
that apply the embeddings from Section 4.1 to our test set. We specify them in terms
of functions f ?(T,w,C(w)) where ? indicates symbols that identify the underlying
method(s) used made clear as follows.

1. Our first approach is based on vector cosine similarity with

f c(T,w,C(w)) = arg max
c∈C(w)

cos(~Tavg,~c),

where ~Tavg is the simple average of non-stop words’ vectors in the context T
and ~c is the context vector for c.

2. Our second approach is based on vector projections with

fp(T,w,C(w)) = arg max
c∈C(w)

[
ρ[cos(~Tavg,~c)] ·

‖P(~Tavg,~c)‖
‖~c‖

]
,

where P(~r, ~s) refers to the projection of ~r on to ~s, ‖ ‖ is the Euclidean norm,
and ρ is the sign function. Using straightforward manipulation based on vector
projections in Euclidean spaces [22, Chapter 5], we have

‖P(~Tavg,~c)‖ =
|~Tavg • ~c|
‖~c‖

,

which is used in our implementation (with • denoting vector dot product).

1In practice, there might be cases where the context in T is deemed insufficient even for human
judges to pick the right sense. However, for this manuscript we assess our performance based on
MSH WSD dataset where each instance is assigned a unique sense.

12
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Figure 4.1: Architecture for WSD approaches from Sections 4.1 and 4.2

3. Our third approach is based on the first two approaches where we set

f c,p(T,w,C(w)) = arg max
c∈C(w)

[
cos(~Tavg,~c) ·

‖P(~Tavg,~c)‖
‖~c‖

]
.

We simply incorporate both evidences (magnitude and orientation of associa-
tion) to compare different CUIs.

4. Our final approach uses a probabilistic model Jimeno-Yepes and Berlanga de-
veloped in an earlier effort [46], which as outlined in Section 2.1, selects the c
that maximizes P (T |c). We involve this knowledge based approach as a third
scoring component and set

f c,p,k(T,w,C(w)) = arg max
c∈C(w)

[
cos(~Tavg,~c) ·

‖P(~Tavg,~c)‖
‖~c‖

+ P (T |c)

]
.

The approach in f c is well known given cosine similarity is a popular approach
to measure semantic similarity of entities (words, concepts, . . . ) represented by the
corresponding vectors. Although f c accounts for the overall directional similarity
(thematic orientation) of the vectors, it does not account for the strength or magni-
tude of association, an aspect that seems ignored in others’ efforts we reviewed for
this paper. By considering the vector projection of the context vector onto the CUI
vector ~c, in fp we also account for the magnitude of the context vector’s projection
in relation to that of the CUI vector. The sign function ρ is essentially to account for
situations when 90 < θ ≤ 180, the angle between ~Tavg and ~c. The methods discussed
thus far can be summarized using the schematic in Figure 4.1.

13
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4.3 WSD with Distant Supervision

From methods in Section 4.2, we have multiple ways of disambiguating CUIs for
any ambiguous term given a sample context. We exploit them to build a distantly
supervised dataset for the 203 ambiguous terms in our test dataset. For each sentence
in an independent corpus of biomedical citations that contains any ambiguous term
from our dataset, we employ methods in Section 4.2 to assign the predicted correct
CUI. Thus we can create a distantly supervised dataset for each ambiguous term with
thousands of examples if we choose a large corpus. These examples can then be used
to train traditional discriminative models or nearest neighbors models. We emphasize
here that we are proposing to label arbitrary sentences (not our test sentences) in
an external corpus based on our methods in Section 4.2. Hence we still have our full
MSH WSD dataset to finally test the approach we propose here with other models
in a fair way.

For the k nearest neighbor (k-NN) model, let Dw ⊆ D be the set of instances
for the ambiguous term w in the distantly supervised dataset D. We rank instances
(D,w, c) ∈ Dw for a given test instance T based on cos(~Tavg, ~Davg), where c is the
sense assigned to D from C(w) based on methods in Section 4.2. Let Rk(Dw) be the

set of top k instances in Dw when ranked in descending order based on cos(~Tavg, ~Davg).
Now the correct sense for T is assigned based on

fk−NN(T,w,C(w)) = arg max
c∈C(w)

 ∑
(D,w,c)∈Rk(Dw)

cos(~Tavg, ~Davg)

 .
The expression in the arg max boils down to summing up the similarities of the test
context with those contexts in the training dataset that have the same assigned CUI
c. We subsequently pick the particular c that maximizes that summation. Intuitively,
our approach aggregates evidence from training instances that are semantically most
similar to our test instance. The choice of k also plays an important role in perfor-
mance of k-NN approaches as we note in the next section.

14
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Chapter 5 Results and Discussion

Our results are shown in Table 5.1 based on methods introduced in the previous
section. MetaMap doesn’t perform as well on this dataset (row 1) even with the WSD
option achieving an accuracy of 81.77%. However, it may not be fair to compare
MetaMap with our methods given it doesn’t try to particularly disambiguate our
specific 203 terms, for each of which we are already given candidate concepts that
contain the correct sense. In row 2 of the table, we show the performance achieved
by our prior work using word-concept probability estimates P (w|c) derived from
synonymous names of concepts in the UMLS Metathesaurus.

Table 5.1: Performance on MSH WSD Dataset

Method Accuracy

MetaMap with WSD 81.77%

Jimeno-Yepes and Berlanga [46] 89.10%

Cosine similarity (f c) 85.54%

Projection length proportion (fp) 88.68%

Combining f c and fp (f c,p) 89.26%

Combining f c, fp, and [46] (f c,p,k) 92.24%

Convolutional neural networks 87.78%

k-NN with k = 3500 (fk−NN) 94.34%

Rows 3–6 show performances of methods we introduced based on neural word
and concept representations in Section 4.2. The cosine similarity and projection ap-
proaches both score above 85% but when used together, they achieve an accuracy
of 89.26% which is slightly better than the current best result [46] achieved through
unsupervised approaches. Row 6 shows an accuracy of 92.24% achieved by our en-
semble method that combines our word/concept vector approach with the knowledge
based Bayesian approach [46]. The test time complexity of these methods is linear in
terms of the number of words in the test context T and the number of senses |C(w)|
for the ambiguous term w considering the computation of ~Tavg and evaluation of the
arg max expressions for each c ∈ C(w).

We created a distantly supervised dataset as outlined in Section 4.3 with the same
corpus of five million biomedical citations used for training word and concept vectors
(Section 4.1). From this corpus, we considered the so called utterances that represent
clauses (from the input text) that MetaMap outputs as distinct fragments with the
corresponding CUIs. For each utterance that contains an ambiguous term in our test
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set, we apply our best linear method f c,p,k (corresponding to row 6 of Table 5.1) to
assign one specific CUI from all possible candidates. There were seven million such
utterances, with an average length of 18 words, that contained an ambiguous term
out of a total of 78 million utterances from the corpus. Given our prior experiences
in convolutional neural networks (CNNs) in biomedical text classification [35] that
proved superior over traditional linear classifiers such as support vector machines
and logistic regression models, we built 203 multi class CNN models, one for each
ambiguous term based on this distantly supervised dataset. The configuration of the
CNN and its various hyper parameters were determined as per our prior effort [35,
Sections 3.2 and 4.2]. This setup however resulted in accuracy of 87.78% which
doesn’t match the performance of simpler approaches (rows 4–6 of Table 5.1).
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Figure 5.1: Accuracy of the k-NN approach with varying k

We finally applied the k-NN approach outlined in Section 4.3 with the distantly su-
pervised dataset with the number of nearest neighbors k ∈ {20, 50, 100, 200, 300, 500,
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. The corresponding accuracies are
plotted as shown in Figure 5.1. We obtained the best accuracy of 94.34% when
k = 3500 as shown in the last row of Table 5.1. Overall, the accuracy rapidly in-
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creases as the numbers of neighbors used increase. The gains become smaller as
more neighbors are added, reaching the top score at k = 3500 after which the ac-
curacy descends abruptly. At k = 5000, the accuracy is same as that achieved with
k = 300. This phenomenon is not surprising – at first more neighbors contribute
to additional evidence, consistency, and robustness against noise in comparing the
candidate concepts. However, considering an increasing number of neighbors at some
point also leads to the semantic drift of their content from that of the test context.
So neighbors ranked further down the list negatively affect the prediction given they
are not as related to the test context, thus lowering overall accuracy. We realize that
the value of k = 3500 is specific to this biomedical dataset and that there could be
a value 3500 < k < 4000 that achieves a slightly higher accuracy. Our analysis is
essentially a proof of concept for the high level monotonous nature of performance
of k-NN based approaches. Given that there are over 38,000 test instances in our
dataset, we believe k ≈ 3500 is appropriate in domains with similar characteristics
(e.g., average number of senses per word, distributions of senses, and average length
of test contexts). However, researchers may be able to derive more appropriate k
values for their domains if they have access to relevant datasets.

Finally, it is well known that k-NN approaches are infamous for high test time
complexity because of the nearest neighbor search in high dimensional space. Our
implementation involves cosine similarity computation with all training instances for
the corresponding ambiguous term. In this effort, on average there are nearly 40,000
training instances created through distant supervision per ambiguous term. So given
a new test instance (T,w,C(w)), cosine similarity (of 300 dimensional vectors) needs
to be computed for the test instance T with about 40,000 contexts to impose the
ranking on these potential neighbors. The threshold of a chosen k (say, 3500) can
only be applied after this ranking is created. However, this similarity computation
can be parallelized in a straightforward manner by distributing the similarity compu-
tations across multiple processors and pooling the results to incrementally build the
ranked neighbor list. Although real time disambiguation may not be feasible, having
the k-NN models run overnight every day to address disambiguation in new articles
may be practical. Alternative approaches such as locality sensitive hashing [39] that
address the dimensionality problems without having to compute cosine similarities
may be helpful to alleviate the situation. Overall, however, it is clear that k-NN
based approaches with distantly supervised datasets offer an interesting alternative
to purely supervised approaches in biomedical WSD.
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Chapter 6 Conclusion

Biomedical WSD is an important initial task with implications for downstream com-
ponents in NLP applications. In this effort, we applied recent approaches in neural
word embeddings to construct concept embeddings. Our linear time method uses
these embeddings to combine cosine similarity, projection magnitude proportion, and
a prior knowledge based approach to produce an accuracy of 92.24%. This is an
absolute 3% improvement over just using the knowledge based approach, which is
the previous best result obtained without supervised learning. Based on predictions
from our best linear method, we created a new distantly supervised dataset and built
a k-NN model that achieves an accuracy of 94.34%. Our results rival performances
achieved by supervised approaches – the best published supervised result achieves 93%
macro accuracy over ten fold cross validation experiments on the MSH WSD dataset
with the Naive Bayes model [16]. Overall, our results in this paper contribute new ev-
idence that dense neural embeddings function as powerful representations of textual
data for biomedical NLP applications. Furthermore, they also showcase the potential
of knowledge-based approaches in learning better neural dense vector representations
and their complementary contributions to WSD tasks.
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